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Abstract. Changes in snowpack associated with climatic warming has drastic impacts on surface energy balance in the 

cryosphere. Yet, traditional monitoring techniques, such as punctual measurements in the field, do not cover the full snowpack 

spatial and temporal variability, which hampers efforts to upscale measurements to the global scale. This variability is one of 15 

the primary constraints in model development. In terms of spatial resolution, active microwaves (synthetic aperture radar—

SAR) can address the issue and outperform methods based on passive microwaves. Thus, high spatial resolution monitoring 

of snow depth (SD) would allow for better parameterization of local processes that drive the spatial variability of snow. The 

overall objective of this study is to evaluate the potential of the TerraSAR-X (TSX) SAR sensor and the wave co-polar phase 

difference (CPD) method for characterizing snow cover at high spatial resolution. Consequently, we first (1) quantified the 20 

spatio-temporal variability of the geophysical properties of the snowpack in an Arctic catchment, we then (2) studied the links 

between snow properties and CPD, considering ground vegetation. Snow depth (SD) could be extracted using the CPD when 

certain conditions are met. A high incidence angle (> 30 °) with a high Topographic Wetness Index (TWI) (> 7.0) showed 

correlation between SD and CPD (R-squared up to 0.72). Further, future work should address a threshold of sensitivity to TWI 

and incidence angle to map snow depth in such environments and assess the potential of using interpolation tools to fill in gaps 25 

in SD information on drier vegetation types. 

1. Introduction 

Snow cover is a key component of the cryosphere which plays an essential role for ecological processes and hydrological 

dynamics. In arctic ecosystems, those processes include species survival (Dolant et al., 2018; Poirier et al., 2019), thermal 

ground regime (Goodrich, 1982; Gouttevin et al., 2012; Stieglitz et al., 2003) or vegetation colonization and growth (Berteaux 30 

et al., 2017; Kankaanpää et al., 2018; Myers-Smith et al., 2011a). In the past 40 years, we observed a pan-Arctic reduction in 
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the snow cover duration of 2–4 days per decade (AMAP, 2017) and maximum Arctic snow depth trend show a consistent 

decrease since 1980 (AMAP, 2017; IPCC, 2019). These trends will undeniably change the arctic landscape. For instance, 

duration of snow patches impacts vegetation phenology (Kankaanpää et al., 2018) and controls shrubs’ growth (Myers-Smith 

et al., 2011b; Pomeroy et al., 2006). Hence, patterns of vegetation densification (also called greening) arise, and dense 35 

vegetation such as shrubs impact the snowpack physical properties. Twigs induce a decrease in snow density and an increase 

of depth hoar formation (Domine et al., 2016; Gouttevin et al., 2018; Sturm et al., 2001). By protruding above the snowpack 

surface, shrubs reduce surface albedo and advance the snow melt timing (Sturm et al., 2001). Coupled to a decreasing trend 

on maximum snow depth and snow cover duration observed (AMAP, 2017; IPCC, 2019), the greening of the Arctic is likely 

to lead to drastic modification of the snowpack. A recent update on the classification of Sturm et al. (1995) suggested by Royer 40 

et al. (2021) demonstrates a positive feedback on climate warming owed to snow-vegetation interaction. High resolution land 

cover classification is therefore needed to address changes in the snowpack in a warming climate. 

Current snow modules used in Earth System Models are based on coarse spatial resolution of tens of kilometres (Bokhorst et 

al., 2016). Coarse special resolution hampers our efforts to understand the dynamics driving snowpacks at the landscape scale. 

Indeed, snow is characterized by a high spatial and temporal heterogeneity ( e.g.: Rutter et al., 2014; Thompson et al., 2016; 45 

Wilcox et al., 2019). Traditional approaches using in situ measurement can provide very detailed spatial information on snow 

properties, but cannot be deployed over large areas. There is therefore a strong need to bridge these two scales and provide 

means to monitor the temporal and spatial variability of the snowpack over larger areas. 

Earth observation satellites can provide frequent measurements over larger areas. Space borne platforms are widely used to 

monitor snow on local, regional, and global scales. Yet, they also suffer from strong limitations. Optical sensors allow 50 

measurements on surface characteristics of snow, but do not provide direct measurements of the properties of the snowpack 

and are often limited by cloud cover. Passive microwave monitoring methods are operational and provide continuous data, but 

suffer from the coarse spatial resolution of satellite observations (e.g.: Frei et al., 2012)). Active microwave observations with 

synthetic aperture radar (SAR) can overcome these issues in providing high resolution frequent snow measurements over large 

areas.  55 

SAR can “see” through clouds while being independent from solar illumination. SAR sensors are interesting to collect data 

from the snowpack because they can, on the one hand, transmit and receive microwaves in horizontal (H) and vertical (V) 

polarization, and on the other hand, their microwaves can interact with and penetrate into the observed material. The main 

challenge related to the use of SAR is the lack of a reliable method to relate satellite data to physical measurements in snow-

impacted environments.  60 

The objective of this paper is therefore to evaluate the potential of polarimetric method co-polar phase difference (CPD) 

produced with the X-band satellite TerraSAR-X to retrieve SD from an arctic snowpack where vegetation is highly variable. 

This general objective requires a complete characterization of the snowpack from field data to fully understand the sensitivity 

of CPD to various snow characteristics. This requirement motivates the following two specific objectives: (1) investigate SD 

variability between different vegetation classes in the Ice Creek catchment (Qikiqtaruk-Herschel Island, Yukon, Canada) using 65 
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in situ measurements collected over the course of a field campaign in 2019 and (2) evaluate linkages between SD and CPD 

distributions considering meteorological data over the 2015–2019 period. 

2. Background: Co-polar phase difference—snow structure  

2.1. Arctic snow properties 

Snow cover in the Arctic is mostly characterized by two main layers (Domine et al., 2016; Royer et al., 2021; Sturm et al., 70 

2008). The upper layer, the wind slab,  is very compact as it is subject to sustained winds and cold temperatures that promote 

cohesion of snow grains (Domine et al., 2018b; Sturm et al., 2008). The basal layer generally consists of depth hoar (DH) 

grains that develop under a kinetic metamorphic regime in dry snow conditions with a sustained strong temperature gradient 

(Domine et al., 2016).  

The snowpack is driven by two types of metamorphic regimes, namely wet and dry snow metamorphism (Bernier et al., 2016). 75 

These regimes develop according to the temperature gradient in the snowpack and to its liquid water content (Colbeck, 1973). 

Wet snow metamorphism, with liquid water available in the snowpack, will lead to different metamorphic processes for 

saturated and unsaturated conditions (Colbeck, 1982). As a result, there will be a major impact on microwave radiative transfer 

given that wet snow acts as a blackbody  in such frequencies (e.g. Rott and Matzler, 1987). In the case of an arctic snowpack, 

a regime of dry snow metamorphism is generally found when sustained cold temperatures last during most of the winter 80 

(Domine et al., 2018a). Schneebeli et Sokratov (2004) found that snow crystals are highly anisotropic (dependency to a 

direction of an object), which is correlated with snow metamorphism (Calonne and al., 2014; Gouttevin and al., 2018). As 

such, over the time, snow crystals become elongated to a vertical direction after their setting up in the snowpack.  

The geometrical structure of the snow will characterize the electromagnetic wave propagation through the snowpack by 

scattering and absorption processes within each layer (Mätzler, 1987). Given the dry nature of the arctic snowpack, the main 85 

source of backscattering should occur at the snow-ground interface for frequencies in X-band (𝜆 = 3.1 cm) such as used in this 

study or below as dry snow can be considered as a homogeneous, “non-scattering” and non-absorbing volume (Leinss et al., 

2014). This said, inhomogeneous layers such as ice layers, melt/freeze crust and any strong vertical change in dielectric 

properties (i.e. density, wetness) can also affect the signal.  

2.3. Co-polar coherence 90 

The co-polar coherence (CCOH) indicates the correlation coefficient of HH and VV phase centers. The magnitude of the 

CCOH ranges between 0 and 1 where a weak correlation (< 0.5 as defined by Leinss et al. [2014]) indicates a low scattering 

with a more chaotic and randomly phase shifts between HH and VV waves and are hence omitted. Such weak correlations will 

occur when HH and VV waves have different phase centers and different scattering targets. A decrease in correlation can also 

be induced by a strong surface scattering caused by rough or wet surfaces, volume scattering during winter or during snow-95 
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free conditions where vegetation is exposed (Fig.1). The equation of CPD is only valid where no volume scattering occurs 

(Leinss et al., 2014) since an increase in volume scattering will lead to a decrease of the CCOH.  

 

Figure 1. Phase shift can also be caused by scattering effects within the snowpack or by surface roughness (including vegetation) (Credit: 

A.Wendleder).  100 

2.4. Co-polar phase difference 

CPD is a polarimetric method using difference in the phase between HH and VV polarization channels. The phase difference 

refers to the difference in the propagation speed of a wavelength in a material as a function of polarization, which then causes 

a phase difference in the electromagnetic wave between polarizations. The phase of a single polarization is assumed to have a 

uniform distribution over [-π, π] (Leinss et al., 2014; Patil et al., 2020).  105 

A relationship was found between CPD and snowfall by Chang et al. (1996) and Leinss et al. (2014) which induces a 

propagation delay among horizontal and vertical phases due to horizontal alignments of fresh snow crystals. Recent studies 

focused on the boreal region (Leinss et al., 2014, 2016) or were applied in arctic region with no or sparse vegetation (Dedieu 

et al., 2018) so the application of the CPD method in the Arctic remains poorly documented. It could be hypothesized that the 

CPD can describe the entire snowpack in such cold and dry environments. Strong vertical changes in density and grain size 110 

could also lead to a decrease in coherence so that the use of CPD information might not be suitable (i.e. when CCOH < 0.5, 

see Fig. 1). 

3. Data and Methods  

3.1. Study site 

Qikiqtaruk-Herschel Island (69° 35’ N, 139° 06’ W) is located about 2 km off the Yukon Coast in the northwestern Canadian 115 

Arctic (Fig. 2). With an approximate area of 108 km2, this island has a rolling topography (max. altitude: 183 m a.s.l.), 

dissected by numerous geomorphological forms such as gullies, valleys and polygonal soils (Short et al., 2011; Stettner et al., 

2018). The permafrost on Qikiqtaruk-Herschel Island is continuous with a high ice content. Ground ice can be observed on the 

island in the form of ice wedges, ice lenses, or buried snowbanks, as observed by Pollard (1990). Results from Wolter et al. 

(2016) suggested that geomorphological processes, such as permafrost degradation, are strongly related to vegetation 120 
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composition on Qikiqtaruk-Herschel. The active layer thickness varies from 45 cm to 90 cm in marine deposits (silty 

diamicton) and can reach over a 110 cm in porous deposits (Lantuit and Pollard, 2008; Smith et al., 1989). A thickening of the 

active layer by 15 cm to 25 cm was documented on the island during the period from 1985 to 2005, as well as an increase in 

the mean annual air temperature by 2.7 °C between 1970 and 2005 (Burn and Zhang, 2009). 

Spatial distribution of snow on the island is primarily based on topography, due to the low tundra-type vegetation (Burn and 125 

Zhang, 2009). The snow is blown away from the uplands and accumulates in topographic depressions such as valleys and 

hummocky terrain (Burn and Zhang, 2009). The dominant wind direction is northwest with frequent storms in late August and 

September (Solomon, 2005). A study by Myers-Smith et al. (2011) indicates an increase in the canopy and vegetation height 

over the last century that can be expected to have an impact on the snow cover structure. 

In this paper, we performed our measurements in the Ice Creek catchment (area of 1.54 km2) located at the eastern end of the 130 

island (Fig. 2). The digital elevation models from ArcticDEM (2 m res.) indicates average slopes of 2.9° with maximums of 

13.2° at altitudes ranging from 5 m to 94 m (Porter et al., 2018).  

 

 Figure 2. (a) Location of the study site in the Arctic (b) Visual extent of TerraSAR-X passages on Qikiqtaruk Herschel Island (c) Ice Creek 

study site including the location of measurements. The black crosses were revisited during each TerraSAR-X acquisitions (Imagery provided 135 
by Worldview 01.01.1001, True Color). The meteorological station belongs to Environment and Climate Change Canada (ECCC).  
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3.2. Snow distribution over Ice creek  

3.2.1. Snow measurements 

Two sampling strategies were used for the snowpit characterization (Table 1). First, detailed snowpit measurements were 

conducted along predefined locations at an average distance of 200 m between each site (Fig. 2c). The snowpit locations in 140 

the centre of the Ice Creek catchment as well as location at the outlet of the catchment were revisited during each TerraSAR-

X (TSX, see 3.3.) acquisition so that soil characteristics remain unchanged between snow sampling and satellite measurements. 

Snow depths were measured using a GPS snow depth probe around the snowpits, ensuring the representativeness of the snowpit 

location. This was conducted by measuring depths in a growing circle moving away from the snowpit location until an 

approximate diameter of 30 m was reached, which is typically the area required to ensure representativeness in tundra 145 

environments (Clark et al., 2011). Snowpits and SD measurements were then distributed spatially elsewhere in the catchment 

to refine the characterization of snow within the catchment. Additionally, two SD transects were conducted across the 

catchment to analyze the SD distribution in the study site. Both transects were established from the east side to the west side 

of the Ice Creek catchment.  

Detailed snow profiles were acquired in spring 2019 (mid-April to early May). In each site, we dug snowpits in a way to avoid 150 

direct solar illumination of the snow wall. High resolution vertical profiles of density, temperature, grain size and type were 

conducted according to Fierz et al. (2009, see Table 1). Specifically, layered density profiles were obtained by extracting snow 

samples from each identified layer using a 100 cm3 density cutter and weighed using a Pesola light series scale. Temperature 

profiles were measured at 3 cm intervals using a Cooper digital thermometer, and profile measurements included shadowed 

surface temperature as well as soil-snow interface.  155 

From the above observations, each layer was classified according to their density and snow grain type across 5 classes 

following Fierz et al. (2009): 1) Depth Hoar, 2) windslab, 3) surface hoar, 4) fresh snow, 5) melt-freeze crust and ice layer. 

The snow depth, mean density of each layer classified, was compiled for later linear regression analysis with TSX data. 
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 160 

Table 1: In situ measurements during the 2019 field campaign 

Snowpits  See Fig 2c 

Stratigraphy Snow height 

Size and grain type (visual estimation) 

Temperature profile (measurement at 3 cm, ± 0.1 °C) 

Snow density by layers (measurements at 5 cm when possible, ± 0.5 kg m-

3) 

Environment and Climate Canada 

(ECCC) meteorological station 69.5682° N, 138.9134° W 

 Wind speeds at 10 m and 2 m (ms-1, hourly) 

Precipitation gauge for total precipitation (mm) and rate (mm h-1),  

Temperature (°C) and relative humidity (%).  

Datalogger — Campbell Scientific CR3000E 

3.2.2. Vegetation units  

The classification of the different vegetation units was obtained from Eischeid (2015) following the initial definition developed 

by Smith et. al. (1989). The classification was determined by the soil type, vegetation observed and geomorphological features. 

The dataset used in this study was derived from 2015 GeoEye satellite data (res.: 1.65 m) (Eischeid, 2015). For the specific 165 

needs of this paper, we focused on the following specific classes: Arctic Willow and Dryas Vetch (hereinafter referred as 

Dryas), Arctic Willow and Lupine (Lupine), Shrub Zone (Shrub) and Willow Saxifrage Coltsfoot (Coltsfoot). These classes 

were selected given that they are physically and spatially different (see Fig. 3d), which is of primary importance from a snow 

microstructure and radar backscattering perspective.  

The Lupine class is associated with an irregular and hummocky terrain (Eischeid, 2015, see Fig. 3d). High variability in 170 

microtopography results in equally heterogeneous SD at a similar scale (Sturm and Holmgren, 1994). Erosion rates and 

moisture content will vary greatly following terrain instability (Eischeid, 2015). The Coltsfoot class is common in wetlands, 

where the ground is generally saturated and composed of shrubs (Eischeid, 2015). This vegetation class is located at the bottom 

of valleys, which is suitable for snow accumulation (Burn and Zhang, 2009). The Shrub class was added by Eischeid (2015). 

to the original classification by Smith et al. (1989) to reflect the growing importance of shrubs on the island. It is characterized 175 

by non-hydrophilic vegetation with lower soil moisture. Finally, the Dryas class is common on the gently undulating upland 

slopes (Smith et al., 1989). The associated soil type is a moderately well-drained Turbic Cryosol, which shows evidence of 

cryoturbation, as well as bare soil. Each snowpit characteristics and SD measurement were grouped by vegetation units to 

extract means and standard deviation by vegetation classes. The snowpits made along the two transects were grouped when 
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they were at a distance less than 30 m and statistics of distribution (average and standard deviation) were extracted to complete 180 

the data analysis.  

 

Figure 3. Vegetation classes occurring in the Ice Creek catchment: (a) irregular and hummocky terrain observed in Lupine class (Credit: M. 

Fritz) (b) Low vegetation on well drained area (such as Dryas) (Photo by the author) and (c) Shrub and wetland (such as Coltsfoot class) 

(Credit: M. Fritz). (d) Vegetations unit’s distribution in the study area (from Obu et al. (2017) as defined initially by Smith et al. (1989). The 185 
classes in grey are not include in the analysis.  

3.3. Snow- SAR correlation  

 3.3.1. SAR acquisition and preprocessing 

A total of five TSX acquisitions in HH and VV polarizations over three different orbits were obtained during spring 2019, 

encompassing areas where snow measurements and vegetation information was available (Table 2). Snowpits and SD 190 

measurements taken before and after (± 2 days) each TSX acquisition were included in the analysis as no precipitation occurred 

and air temperature was stable during the field campaign. Additionally, a time series of TSX acquisitions for the 2014–2019 

period (orbit 24, θ= 31°) was analyzed to evaluate the inter-annual variability of snow conditions on the island. The full TSX 
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dataset was first processed at the DLR (German Aerospace Center). The preprocessing is described in Schmitt et al. (2015), 

and includes the determination of the Kennaugh elements, their radiometric calibration and orthorectification. The images 195 

were georeferenced in UTM with a ground sampling distance of 5 m. To reduce speckle noise, we used the multi-scale multi-

looking algorithm developed by Schmitt (2016; Schmitt et al., 2015). CPD and CCOH can directly be derived from the 

radiometric and geometrically calibrated Kennaugh elements. The Kennaugh matrix describes the polarimetric information 

and allows to differentiate the physical scattering mechanisms (e.g. double bounce, volume and surface scattering) affecting 

the signal, which in turn can be linked to snow characteristics. The following Kennaugh elements were used in the CPD 200 

equation: 

𝜙𝐻𝐻 − 𝜙𝑉𝑉 = atan (
𝐾7

−𝐾3
)           (1) 

where K7 is the phase shift between HH, and VV phase centre described as  

𝐾7 = Im{𝑆𝐻𝐻𝑆𝑉𝑉
∗}           (2) 

and where K3 is the scattering difference between surface to double bounce:  205 

𝐾3 = − Re{𝑆𝐻𝐻𝑆𝑉𝑉
     ∗}           (3) 

To reduce the loss of coherence, a threshold was applied to CPD pixels where CCOH was less than 0.5, following Leinss et 

al. (2014). Again, the Kennaugh elements were used in the CCOH equation:  

𝛾𝑉𝑉,𝐻𝐻 ∙  𝑒𝑖𝜙𝐶𝑃𝐷
𝛾

=  
〈𝑆𝑉𝑉 ∙𝑆𝐻𝐻

∗ 〉

√〈|𝑆𝑉𝑉 |
2〉∙〈|𝑆𝐻𝐻|2〉

≈ 2 ∙ √
𝐾3

2+𝐾7
2

𝐾0
2−𝐾4

2        (4) 

 210 

A total of 32 pixels had a CCOH less than 0.5, hence showing a random phase shift between waves which is not optimal for 

CPD applications. These pixels were therefore removed from the analysis. To discard the potential effect of slope on crystal 

grains orientation, 5 pixels with a slope greater than 10° were subsequently extracted (3 in the Dryas class, 2 in the Lupine). 

To assess the temporal variability of CPD signal, pixels were divided by vegetation class for the period 2015–2019.  

 215 

Table 2: TSX acquisition on Qikiqtaruk-Herschel Island. All orbits were used for linear regression with in situ snow measurements. 

Orbit 24 has a sufficient time series and was used to extract temporal evolution of CPD. 

Relative 

orbit 

Flight 

direction 
Polarization mode 

Incidence 

angle 
Observation period 

Number of 

scenes 
In situ data 

24 Descending HH, VV 31° 
2014.12.26—2018.03.06 

2019.04.17—2019.05.20 
104 

2019.04.17  

2019.04.28 

152 Ascending HH, VV 24° 2019.04.15—2019.05.18 24 2019.04.26 

115 Descending HH, VV 38° 2019.04.23—2019.05.15  24 
2019.04.23 

2019.05.04 

https://doi.org/10.5194/tc-2021-314
Preprint. Discussion started: 13 October 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

3.3.2. Linking snow depth to CPD 

Implication of Snow Geometry 

We focused on the SD variability between vegetation classes. We also evaluated depth hoar fraction (DHF) given that King et 220 

al. (2018) found that X-band backscattering is highly sensitive to depth hoar grains. This allowed us to assess if any 

discrepancies in SD retrieval can be linked to large grain size. In addition, horizontal structures such as ice layers and 

melt/freeze crusts were identified for the same purpose of testing the SD retrieval capabilities in different stratigraphic contexts. 

Dedieu et al. (2018) showed that the attenuation of the SAR signal was caused by ice layers of 3 to 5 cm thick, but lingering 

uncertainties remain with regards to the contribution of thinner ice lenses such as the ones found on Qikiqtaruk-Herschel 225 

Island.  

Topographic Wetness Index as a proxy 

SD retrieval is challenging because it is impacted by snow surface properties. SD retrieval with CPD may be impacted by the 

dielectric properties of the snow surface, since the main backscatter signal is expected at the snow ground interface. High 

moisture content at the soil surface would potentially improve the performance of SD retrieval, because the presence of ice 230 

leads to better reflection conditions for the microwave. The Topographic Wetness Index (TWI) was chosen as a proxy to 

analyze the variance between vegetation groups. Given the high sensitivity of microwaves to wetness, the high variability of 

TWI between each vegetation class will lead to different responses in backscattering through changes in the dielectric constant 

of the soil. The TWI was first developed by Beven and Kirkby (1979) within the runoff model TOPMODEL using the 

following equation:  235 

𝑇𝑊𝐼 = ln(
𝑎

tanβ
)            (5) 

where tanβ is the local slope and a is the upslope area per unit which is obtained with the upslope area (the cells contributing 

to the runoff to the cells of interest, A) and the contour length (L) following a=A/L. The upslope area calculated is based on 

D8 flow direction algorithm (O’Callaghan and Mark, 1984) and the TWI values were computed based on the ArticDEM 

constructed from the DigitalGlobe Constellation (Porter et al., 2018, res: 2 m). Each TWI values derived from the catchment 240 

was combined to vegetation classes and CPD cells as described above.  

Analysis 

The Shapiro-Wilk test was used to test the normality of distributions for SD and TWI. Since TWI and SD distributions did not 

respect a normal distribution, the variance in TWI and SD between each group was tested with the non-parametric test Welch 

ANOVA in conjunction with a post-hoc Games-Howell test. We use the Games-Howell test as it does not assume equal 245 

variances and sample sizes (Games and Howell, 1976). 

We evaluated the correlation between snow characteristics and CPD using a linear regression analysis. The median value was 

extracted when more than one snow measurement was found in the same TSX pixel (5 m). Thus, a total of 371 pixels was used 

in the analysis (average number of snow measurements per pixel: 1.7). The median SD by pixels were grouped by vegetation 
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classes and orbit. Durbin-Watson’s test and Breusch-Pagan’s were used to assess autocorrelations and homoscedasticity of 250 

distribution data. Significance for all tests were calculated with α = 0.05. 

4. Results 

4.1. Snow distribution  

4.1.1. Snow depth and depth hoar fraction along transects 

Measurements of SD from transect #1 (Fig. 4) varied between 20 and 250 cm where the peak was measured at the valley 255 

bottom. Further west, SD values decreased significantly on the slope with values between 20 and 50 cm. Highest DHF along 

the transect were found on the west side of the transect and on the slopes with an average of 0.76 while an average of 0.39 was 

observed on the east side of the catchment. Along transect #2 (Fig. 4), and snow cover was also deeper at the bottom of the 

valley (from 120 cm up to 200 cm) and decreased significantly on slopes and higher elevation areas (30 cm to 50 cm).  

 260 

Figure 4. Snow depth (SD) transects surveyed in the Ice Creek catchment. Transect #1 and transect #2 shows snow depth (solid line) and 

altitude (m.a.s.l., dashed line) along transect. Mean Depth hoar (DH) ratio are indicated along transects by proportional size. 1a, 1b and 2c 

contain one observation. See Fig. 2c for their location in the catchment.  
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4.1.2. Snow characteristics by vegetation classes 

Snow Depth 265 

The average SD within Ice Creek catchment was 47.4 cm ± 39.6 cm. The range of variability was substantial, with minimum 

value at 8.0 cm and a maximum at 212.0 cm. The standard deviation of the snow depth was variable yet strong among all 

classes (Table 3). The largest standard deviation measured was over Lupine (22.3 cm or 57 % of the mean SD) followed by 

Coltsfoot (67.6 cm or 54 % of the mean SD). Coltsfoot was by far characterized a greater SD than any other class.  

Despite the great deviation around the mean for each class, the Welch ANOVA (Table 4) shows that SD is significantly 270 

different between all vegetation groups (p-value = 5–13). Games-Howell post-hoc revealed that Coltsfoot SD measurement is 

significantly different from the other classes as well as Dryas. The difference between Lupine and Shrub is not significant.  

Topographic Wetness Index 

The average TWI was 6.1 ± 1.6. The minimum and the maximum ranged between 2.5 and 14.7 while the average by vegetation 

classes range between 7.4 and 5.5 with a weak deviation around the means (Table 3). Coltsfoot showed the highest TWI which 275 

is consistent with its location in the valley (Fig. 3) and its vegetation group type, characterized by hydrophilic vegetation. The 

Welch ANOVA shows that wetness index extracted with TWI is significantly different between all vegetation groups with a 

p-value <0.001 (p-value = 6–14), which again is expected to lead to different responses from TSX. The Games-Howell post-

hoc test revealed that difference in TWI is not significant between Coltsfoot and Shrub units and between Dryas and Lupine 

(Table 5).  280 

Depth Hoar Fraction 

The DHF of the snowpack was larger than 0.5 for all vegetation classes. However, standard deviations of classes with shallow 

snow such as Lupine and Dryas were greater whereas the standard deviation was lower than 0.1 for Coltsfoot where the SD is 

the highest. At least one horizontal structure (ice layer or melt-freeze crust layer) was found in each snowpit. The average 

thickness of each ice or melt-freeze crust layer was 1.6 cm ± 0.7 cm and the cumulative thickness average by snowpit was 285 

4.5 cm ± 2.8 cm. The maximum ice thickness (4 cm) was found at the station downstream, which would suggest that the 

sensitivity of the CPD to ice layers should be generally lower than what was found by Dedieu et al. (2018). The high 

stratification otherwise may attenuate the signal.  
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Table 3: Averaged SD and DHF for each of the vegetation class 290 

Table 4: Post-hoc analysis with Games-Howell for snow depth in vegetation classes (non-parametric test). Each row present variance 

between snow depth means from two different groups. All vegetation groups were tested on each other. 

Snow depth 

Class 1 Class 2 Mean Difference  

(cm) 

Standard error 

(cm) 

p-value 

Coltsfoot Dryas +94.2 12.60 0.001 

Coltsfoot Lupine +87.1 12.71 0.001 

Coltsfoot Shrub +81.9 13.14 0.001 

Dryas Lupine -7.14 2.36 0.014 

Dryas Shrub -12.34 4.07 0.015 

Lupine Shrub -5.2 4.41 0.622 

Table 5: Post-hoc analysis with Games-Howell for the TWI (non-parametric test). Each row present variance between TWI means 

from two different groups. All vegetation groups were tested on each other. 

TWI 

Group 1 Group 2 Mean Difference 

(Wetness index) 

Standard error 

(cm) 

p-value 

Coltsfoot Dryas +1.56 0.20 0.001 

Coltsfoot Lupine +1.97 0.22 0.001 

Coltsfoot Shrub +0.63 0.30 0.147 

Dryas Lupine +0.41 0.17 0.076 

Dryas Shrub -0.93 0.26 0.003 

Lupine Shrub -1.34 0.28 0.001 

Vegetation class SD and 

TWI nb of 

samples  

Averaged SD 

±σ (cm) 

Averaged 

TWI ±σ 

DHF nb of 

samples 

Averaged DHF ±σ 

(%) 

Coltsfoot  29 126.0 ± 67.6 7.4 ± 0.9 8 0.55 ± 0.06 

Dryas  146 31.8 ± 14.1 5.9 ± 1.2 16 0.62 ± 0.31 

Lupine 118 38.9 ± 22.3 5.5 ± 1.5 21 0.60 ± 0.21 

Shrub 28 44.1 ± 20.6 6.8 ± 1.3 6 0.51 ± 0.18 

Other units 50 69.3 ± 47.2 6.8 ± 2.4 7 0.58 ± 0.20 

Average in catchment  371 47.4 ± 39.6 6.1 ± 1.6 58 0.59 ± 0.22 
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4.2. TerraSAR-X results 295 

4.2.1. Spatial and temporal evolution of CPD  

Figures 5a and 5c show the averaged temporal evolution of CPD and CCOH with descending orbit 24 (incidence angle = 31°) 

for each vegetation class as well as the confidence interval (95%). The period with presence of snow was set between mid-

September and mid-May based on prior observations (Burn and Zhang, 2009; Stettner et al., 2018). Figure 5c shows the 

monthly average temperature and cumulative monthly precipitation on Qikiqtaruk-Herschel Island.  300 

A periodicity was observed with the CPD signal, with on one side, the period of snow-free condition where the signal oscillates 

around zero, and on the other side, the period with snow where the signal decreased over the season suggesting an influence 

from the snowpack. For the 2014–2019 period, the mean CPD value during the snow season was -8.59° with annual mean 

ranging between 13.41° (2014–2015) and -6.42° (2017–2018). During the snow-free condition, the average CPD over the same 

period increased to -0.87° and ranged between -0.44° (2014–2015) and -1.32° (2015–2016). The decrease generally started in 305 

January, when the average air temperature is at its coldest (-20 °C) except in 2016, where a warming occurred, increasing the 

average temperature of 5 °C for that year. The two classes with taller vegetation type (Coltsfoot and Shrub) stood out during 

the winters 2014–2015 and 2016–2017. There the CPD decreased to -60° towards the end of the winter. The decrease in the 

CPD was therefore similar between the vegetation classes and is about -15°.  

Overall, the coherence stayed greater than the 0.5 threshold over 2014–2019 period with an average of 0.71 ± 0.11. The signal 310 

was lower during snow-free period where the average is 0.63 ± 0.11. The coherence then increased around 0.76 ± 0.08 during 

the winter. Coltsfoot and Shrub classes showed greater variation on the coherence over the seasons and the years compared to 

Lupine and Dryas classes. The average CCOH by vegetation classes ranged between 0.69 ± 0.07 (for Coltsfoot) and 0.72 ± 0.07 

(for Dryas). 
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 315 

Figure 5. (a) Average CPD and (b) Average CCOH by vegetation class with interval of confidence (95%) for orbit 24 (31°, descending). 

Pixels values were extracted from GPS dataset (see Fig. 2c), where NColtsfoot = 33, NDryas = 140, NLupine = 118, NShrub = 29. Winter period 

(mid-September to mid-May) is shows in shaded area. Windows pixels size is 1x1 pixel (5x5m). (c) Meteorological data from Qikiqtaruk 

Herschel Island station (dataset from Environment Canada (2021)). The meteorological station is not equipped with a telemetry system and 

since the island is inaccessible during the winter, the lack of data during the winters 2015 and 2018 was caused by a malfunction of the 320 
station. 

4.2.2. Retrieving SD per vegetation class using CPD 

The dataset from 2019 was used to perform a simple linear regression analysis allowing to assess whether there is a statistically 

significant relationship between snow measurements (layer depth of the depth hoar, wind slab, melt-freeze crust and ice layers 

and mean density of each layer) and CPD. No significant correlation was found other than SD or the samples contained fewer 325 

than 10 observations which bring elusive correlation (see Appendix A for more details). The best correlations between SD and 

CPD were found with Lupine (orbit 24, desc., incidence angle 31°) and Coltsfoot (orbit 115, desc., incidence angle 38°) 

(Table 6).  

The Coltsfoot and Shrub classes were characterized by similar TWI mean values as well as low TWI variance. These two 

classes were combined to be compared with other classes (named Coltsfoot+Shrub in Table 6). This grouping led to an 330 

improvement in the coefficient of determination of 0.044 as well as a decrease in p-value and standard deviation. Samples with 

a coefficient of determination greater than 0.50 met the assumptions of homoscedasticity as well as the absence of 

autocorrelation, except for the sample located in Coltsfoot+Shrub in the 115 orbit, and samples located in Coltsfoot in the 
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152  asc. orbit (See Table B1 for further details). These results show clearly that CPD can be used to retrieve SD, albeit not in 

all vegetation classes. 335 

Table 6: R-squared, p-value and standard deviation (R² ± std [pvalue±std]) results from linear regression analysis between SD and CPD 

obtained by vegetation classes and by orbits. The confidence interval was measured using the “Boostrap with replacement” resampling 

technique (Nbootstrap = 1000). The standard deviation of r-squared and the p-value obtained by the technique are indicated in the results whose 

variance is explained to more than 50% 

 
Lupine Dryas Coltsfoot  Coltsfoot+Shrub  

Orbit 24 (31°) 0.55 ± 0.11 

(0.001 ± 0.004) 

0.01 (0.59) 0.10 (0.55) ** 0.07 (0.47) 

Orbit 115 (38°) 0.01 (0.51) 0.004 (0.64) 0.72 ± 0.16 

(0.00 ± 0.01) 

0.74 ± 0.09 

(0.00 ± 0.00) 

Orbit 152 (24°) 0.02 (0.44) 0.0 (0.82) 0.68 ± 0.18 ** 

(0.08 ± 0.08) 

0.001 (0.91) 

** Fewer than 10 observations   

5. Discussion 340 

5.1. Snow distribution on Qikiqtaruk-Herschel Island 

Snow Depth 

On the study site, snow gets quickly redistributed across the landscape by winds. Burn and Zhang (2009) showed that SD 

distribution patterns were primarily driven by topography in close vicinity to the Ice Creeks. Our observations (Fig. 4) concur 

and expand on those from Burn and Zhang (2009) by highlighting the effect of microtopography and of vegetation in 345 

controlling SD. The SD was greater (> 100 cm) in areas characterized by shrubs and wetlands (Coltsfoot), which are mainly 

associated with valley bottom locations. There is a significant difference in SD between Coltsfoot and any other class, which 

shows that snow gets blown away on high points and slopes and accumulated in spatially constrained areas at the valley bottom 

(Fig. 3d and 3c). By contrast, grass-type or shallow vegetation, such as Dryas and Lupine, is found in wind-exposed areas. 

Deeper snow was found over Lupine compared to Dryas. The microtopography may play a role in this difference, as the 350 

standard deviation of SD is greater in the Lupine. There is greater variability in SD between the troughs and the top of 

hummocks, as documented by Wilcox et al. (2019). Thus, we can relate to this study as the distribution of snow in the Ice 

Creek catchment is driven primarily by vegetation and topography. 

Depth Hoar Fraction 

We suggest that the DHF is strongly driven by microtopography. During winter 2019, the DHF amounted to an average of 355 

59% of the snowpack (n = 58). There is a greater standard deviation of these measurements in vegetation classes where the 
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average SD is lower (less than 40 cm average depth) such as Lupine and Dryas. The effect of microtopography allows snow 

capture in hummock hollows early in the season and the thermal gradient from the ground to the surface varies accordingly 

(King et al., 2018; Wilcox et al., 2019). Depth hoar develops when a strong thermal gradient occurs between the ground and 

the snow surface. There are two situations where a strong gradient occurs: 1) when the SD is low and 2) when the soil is warm 360 

and the snow surface is cold. Sturm and Holmgren (1994) have shown that the depressions in tussocks or hummock are warmer 

than the top. The thermal gradient found in this type of vegetation class may therefore explain the large standard deviation of 

DHF found in Lupine class. Thus, the soil wetness should be higher in the hollows, but that effect might not be captured by 

the TWI used in this paper as its spatial resolution relies on a 2 m resolution DEM.  

Comparison over Snow Classification 365 

The snow characteristics observed over the Ice Creek catchment are consistent with the literature. We compared our statistics 

to the classification proposed by Royer et al. (2021) and observed a good fit with the Herbaceous and low shrub tundra snow 

class (Table 7). The standard deviation of the mean snow depth from our study site and from Royer et al. (2021) classification 

are both greater than 80%. The local topography inherited from the last glaciation (Late Wisconsin) is specific to Qikiqtaruk-

Herschel Island and could explain higher snow depth, and therefore higher SWE and density. The maritime effect observed on 370 

Qikiqtaruk (Cray and Pollard, 2015) could also explain the warmer mean temperature during winter. All study sites used in 

Royer et al. (2021) classification are in the East of Canada. Further studies and datasets from the western part of Canada would 

greatly improve the snow classification.  

Table 7. Comparison of snow characteristics with Royer et al. (2021) classification. Mean temperature was extracted from 1974-2019 

meteorological station from Qikiqtaruk Herschel Island and for the winter season (December to March as define by Royer et al (2021)).  375 

 

Latitude 

range (°N) 

Mean 

Temperature (°C) 

SWE ± Std 

(mm) 

SD ± Std 

(cm) 

Density ±Std 

(kg m-3) 

Qikiqtaruk Herschel 

Island 
68-69 -22.1 142.6 ± 99.1 47.4 ± 39.6 343.8 ± 73.7 

Herbaceous and low 

shrub tundra snow (from 

Royer et al. (2021) 

58-74 -23.6 132.9 ± 57.6 43.1 ± 35.2 315.3 ± 49.1 

5.2. CPD Spatio-temporal evolution and SD correlation 

The high-resolution vegetation classification used in this paper allowed us to show that CPD varies greatly according to seasons 

and vegetation class (Fig. 5). Overall, the CPD signal decreased during winter and increased rapidly during melt. This concurs 

with observations from Leinss et al. (2014, 2016) made in Sodankylä. According to the model developed by Leinss (2014, 

2016), the strong CPD decrease observed in 2015 and 2017 winters over shrubs areas could be explained by fresh snow 380 
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accumulation or dominance in horizontal structures. However, the snow distribution analysis showed that the Shrub class has 

shallow snow, making it, SD-wise, significantly different from the Coltsfoot class, meaning the result doesn’t show that the 

measured CPD signal is entirely governed by the snowpack. The CPD evolution over different vegetation classes is 

significantly different between two distinct groups: tall vegetation zones (Coltsfoot and Shrubs) and low vegetation zones 

(Lupine and Dryas). The small decrease observed at Lupine and Dryas classes could indicate an influence from the ground, as 385 

the snow depth measured is less than 30 cm and highly stratified. The effect from inhomogeneities within the snowpack does 

not support this case, as the CCOH is greater of 0.5 for each pixel. Although the snowpack was highly stratified, each ice 

layers or melt-freeze crust was in average less than 2 cm thick, which is thinner than the ice layers in the snowpacks studied 

by Dedieu et al. (2018). It may explain why the linear regression analysis of CPD shows the best results with the total SD (i.e. 

less sensitive to small crusts), which has never been observed before. 390 

A high level of moisture in the ground will lead to major dielectric contrast at the snow-soil interface, hence limiting the 

penetration depth of the radar signal (Duguay et al., 2015). Thus, the sensitivity of the signal to ground conditions decreases. 

Duguay et al. (2015) also showed a strong saturation of TSX signal in the areas with shrubs greater than 50 cm. The shrubs 

may explain the best correlation observed in Table 6 as Myers-Smith et al. (2019) report an increase of the canopy where the 

measured shrubs at the bottom of the valley were more than a meter.  395 

The TWI variance analysis shows that there is no significant variance between Coltsfoot—Shrub classes and between Lupine—

Dryas classes, which could explain the strong decrease of the signal observed in mid-winter (Fig. 5). A high TWI indicates a 

high-water accumulation potential, hence a higher saturation of the soil. In the microwave range, soil saturation increases the 

dielectric properties of the soil. The sensitivity of the X-band radar signal is then higher, which allows the interface between 

the snowpack and the ground to be well discriminated. Thus, CPD captures snow accumulation well across winter in areas of 400 

higher potential of soil moisture, while soils with lower potential moisture are likely to contribute to the CPD signal and thus 

reduce the correlation between snow depth and CPD signal.  

We suggest the increase in the r-squared depends on the soil moisture because there is less contribution from the ground on 

the backscatter signal. A higher incidence angle (> 30°) improve the results, agreeing with Leinss et al. (2014). The use of the 

TWI is promising for the snow-SAR dynamics as it is easy to compute and relies on topographic datasets that are now widely 405 

available for the entire Arctic. Furthermore, no correlation was found between retrieval performance of SD and DHF, 

suggesting that the poor performance over Dryas class is explained by soil contributions. The relatively conclusive results for 

the Lupine class at orbit 24 show an inverse correlation (Fig. 6) which contradicts with Leinss et al. (2014). We hypothesize 

that the tussock depressions are preferential areas for the formation of depth hoar, caused by the effect of microtopography. 

Thus, vertical structures are dominant in the snowpack, which could explain an increase of vertical structure where the 410 

snowpack is deeper at this vegetation class. Further analysis should be done on the soil moisture and on the effect of the depth 

hoar distribution to better capture the wetness of hummocky area and how it can improve retrievals of SD.  
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Figure 6. Correlation analysis between CPD and snow depth. 

6. Conclusion  415 

This study was the first to investigate the potential of co-polar phase difference (CPD) derived from TerraSAR-X data in 

combination with snowpit characterization over Qikiqtaruk-Herschel Island. We were able to find a variability in SD and TWI 

depending on vegetation classes extracted from a high-resolution map of vegetation cover. Classifying snowpits by vegetation 

classes on Qikiqtaruk-Herschel Island shows respectable results, helping to demonstrate the effect of topography and hence 

the moisture rate of the ground on CPD signal. The 2019 dataset shows a high heterogenous snowpack with different ice layers 420 

and with a DHF representing in average more than half of the snowpack.  

Despite this complex snowpack, we demonstrate a correlation between the CPD and the SD when certain conditions are met. 

A high incidence angle (> 30°) with a high TWI (> 7.0) allows to show a correlation between SD and CPD with R-squared up 

to 0.72. CPD cannot be used to extract the fresh snow in an arctic context, as the penetration of the electromagnetic wave tend 

to go through the entire snowpack. 425 

The in-situ data used for the present study do not cover the entire winter on Qikiqtaruk-Herschel Island, which brings 

uncertainties on snow depth characterization with CPD. The maritime climate of Qikiqtaruk-Herschel Island may advance the 

snow melt period and provoke a shift to a wet metamorphism regime of the snowpack. The lack of consistent stratigraphy 

measurement over the winter is still a major limit in snow studies. Consistent stratigraphy measurement over the winter would 

improve the understanding of the snowpack metamorphism regime. 430 
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Focus of future studies could be the threshold sensitivity to TWI and the incidence angle of snow depth retrievals to map snow 

depth in such environments and to evaluate the potential of using interpolation tools to cover the gaps in SD information over 

dryer vegetation types. 
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 585 

Appendix A: Complementary results 

 

 
Figure 1A: Linear regression between CPD and snowdepth on descending orbit (orbits 24 and 115) without TWI threshold.  

 590 

Table A1 show the complementary results retrieved during the linear regression analysis, between CPD and every snow 

variable measured on the field. Results with R2 greater or equal to 0.5 are shown in bold character. The samples may vary 

when a measurement was not possible during the field campaign.  

Each variables describe a characteristic sampled in the snowpit:  

H_tot : Snow depth (cm). 595 

H_ws : Wind slab height (cm). 

H_dh : Depth hoar height (cm). 

H_tot_ice : Snow height to the first ice layer observed in the snowpit (cm). The ice layer thickness must be greater than 2 cm.  

H_tot_mf : Snow height to the first meltfreeze crust (cm). 

Density_moy : Average snow density (kg m-3) 600 

Density_dh : Average density for the depth hoar layer (kg m-3). 

Ssa_ws :  Average snow surface area measured in the wind slab layer. 

Ratio_df : Depth hoar fraction in the snowpit (%) 

Cumul_tot : Cumulative thickness of horizontal layers (meltfreeze crust, ice lens, in cm).  

Ice_cumul : Cumulative thickness of ice lens (cm). cumulée de couche de glace  605 

Cumul_crust : Cumulative thickness of meltfreeze crust (cm). 

Ratio_ws : Windslab ratio in the snowpit (%) 
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Table A1. Complementary results retrieved during the linear regression analysis. The standard deviation with bootstrap is not show as the 

results with R2 greater than 0.5 have samples with less than 8 observations.  610 
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tot 
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tot 
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h_dh 
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mf 
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ice 
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dh 
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dh 

R2 (p) 0.04 

(0.7) 

0.46(

0.06) 

0.64 

(0.02) 

0.45(

0.07) 
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(0.06) 
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(0.72) 
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(0.19) 
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(0.28) 
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0.0 

(0.87)  

0.2 

(0.14) 

0.03 

(0.55)  

0.08 

(0.33) 

sample 13 14 14 13 14 12 12 14 14 14 12 13 14 

https://doi.org/10.5194/tc-2021-314
Preprint. Discussion started: 13 October 2021
c© Author(s) 2021. CC BY 4.0 License.



26 

 

Appendix B: Statistical analysis assumptions and results 

Homoscedasticity 615 

Linear least squares regression assumes that the residuals come from a population where the variance is constant. When 

heteroscedasticity is present, the result is therefore unreliable. The Breusch-Pagan statistical test evaluates the assumption of 

homoscedasticity, i.e. the consistency of the error variance in a linear regression model.  

The assumptions are:  

null hypothesis (H0): Homoscedasticity is present 620 

alternative hypothesis (Ha): Homoscedasticity is not present (heteroscedasticity is present) 

If the p-value of the Lagrange multiplier statistic (LMS) is greater than 0.05, the probability of homoscedasticity is greater 

than 5%. The null hypothesis is therefore retained. In the opposite case (p-value < 0.05), the probability of homoscedasticity 

is less than 5%. The alternative hypothesis is then adopted.  

Autocorrelation  625 

The Durbin-Watson test (DW) is used to test the autocorrelation of residuals in linear regression models. It assesses whether 

the residuals are independent.  

The assumptions are:  

H0: There is no correlation between the residuals 

Ha: The residuals are autocorrelated.  630 

The results are expected between 0 and 4. Values between 1.5 and 2.5 indicates no autocorrelation. Results near 0 show positive 

autocorrelation, while results near 4 show negative autocorrelation.  
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Table B1. statistical test results for CPD and snowdepth correlation analysis. Each model represents a divided sample in function of 635 
vegetation class and TSX orbit. Results with an R2 greater than 0.5 is shown. Durbin-Watson test (DW) and the Breusch-Pagan test (LMS) 

were selected to assess the autocorrelation for the first and the homoscedasticity for the latter. LMS stand for Lagrange multiplier statistic 

 

Vegetation class orbit sample R2 Adjusted 

R2 

DW LMS LMS 

 p-value 

Lupine 24 17 0.55 0.52 1.80 2.51 0.11 

Coltsfoot 115 16 0.70 0.68 2.01 1.65 0.19 

Coltsfoot+Shrub 115 19 0.75 0.73 0.81 3.48 0.06 

Coltsfoot 152 5 0.68 0.58 1.37 2.03 0.15 
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